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Basic question

How do the roots of a polynomial change as we change the
polynomial?

Main examples in this talk: heat flow and repeated differentiation

Will consider both operations in two cases: real roots and complex
roots

Will find a close connection to random matrix theory and partial
differential equations
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Differentiation example
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PART 1

POLYNOMIALS WITH ALL REAL ROOTS:
HEAT FLOW
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Heat flow on polynomials: definition

If p(z) is a polynomial on C, define heat operator

exp

{
τ

2

d2

dz2

}
p(z) =

∞

∑
n=0

1

n!

(τ

2

)n d2np

dz2n
, z ∈ C,

as a terminating power series, all τ ∈ C

If τ = t is real and positive and z = x is real, the function

u(x , t) := exp

{
t

2

d2

dx2

}
p(x), x ∈ R,

satisfies the standard heat equation

∂u

∂t
=

1

2

∂2u

∂x2
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Heat operator on polynomials: normalization

If p(z) is a polynomial of degree N, convenient to normalize heat
operator with N in denominator:

exp

{
τ

2N

d2

dz2

}
p(z)

This normalization will make the evolution of zeros behave well when
N → ∞
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Backward heat flow on polynomials

Now take τ = −t and consider backward heat operator

exp

{
− t

2N

d2

dz2

}
, t > 0,

on polynomials

Theorem (Pólya–Benz 1934)

If p has all real roots, so does

exp

{
− t

2N

d2

dz2

}
p(z)

for all t > 0.
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Backward heat operator: first example

Apply to zN , get scaled Hermite polynomial

Histogram of zeros of e−
t
2N

d2

dz2 (zN) with N = 200

-2 t 2 t

Zeros have asymptotically semicircular shape on [−2
√
t, 2

√
t]
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Backward heat operator: second example

Take p(z) = (z − 1)N/2(z + 1)N/2

Half zeros at 1, half at −1

Histogram of zeros of e−
t
2N

d2

dz2 p with N = 500, t = 1

1 2
0

5

10

15

20

25

Brian C. Hall Polynomials under flows September 2024 BIRS 9 / 48



Connection to random matrix theory

GUE: Gaussian unitary ensemble

Take N ×N Hermitian random matrix X with entries on and above
diagonal independent

Complex Gaussian with mean zero and variance 1/N off diagonal

Real Gaussian with mean zero and variance 1/N on diagonal

Eigenvalues asymptotically have semicircular distribution on [−2, 2]
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Connection to random matrix theory

Take sequence of real-rooted polynomials pN of degree N

Assume root distribution converges to prob. measure µ

Make diagonal matrix XN
0 with roots of pN on diagonal

Take XN to be GUE matrix

Claim

Roots of e−
t
2N

d2

dz2 (pN(z)) resemble eigenvalues of XN
0 +

√
tXN , which can

be computed using free convolution of µ with a semicircular distribution.

So: backward heat flow is like adding a GUE
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Free convolution with semicircular distribution

Define Cauchy transform of measure µ on R by

Cµ(z) =
∫

R

1

z − x
dµ(x), Im z > 0.

Holomorphic on upper half-plane

Can recover µ from Cµ by Stieltjes inversion formula

dµ(x) = − 1

2π
lim

ε→0+

(
ImCµ(x + iε) dx

)
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Free convolution with semicircular distribution

Theorem (Voiculescu/Kabluchko)

If polynomials pN has real roots and the distribution of roots converges to

µ, then the distribution of roots of e−
t
2N

d2

dz2 pN converges to a measure µt

whose Cauchy transform satisfies

∂C

∂t
= −C

∂C

∂z
, Im z > 0,

Can then solve this PDE using the method of characteristics

Gives semi-explicit way to compute µt

µt is free convolution ⊞ of µ with semicircular measure of variance t
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Roots at ±1

Take µ to have mass 1/2 at 1 and mass 1/2 at −1

Describe polynomial p with zeros at ±1

Compute µ ⊞ sct at, say, t = 1

0.2

0.4

0.6

This gives limiting distribution of zeros of e−
1
2N

d2

dz2 p(z)
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PART 2

POLYNOMIALS WITH ALL REAL ROOTS:
REPEATED DIFFERENTIATION
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Repeated differentiation of polynomials with real roots

Start with polynomial PN of degree N with real roots

Then differentiate ⌊Nt⌋ times, 0 ≤ t < 1

Number of deriv. proportional to N

Roots remain real!

Assume root dist. of PN converges to µ

Try to find limiting root dist. µt of ⌊Nt⌋-th derivative

Brian C. Hall Polynomials under flows September 2024 BIRS 16 / 48



Connection to random matrix theory

Assume (at first) that t = 1− 1/k with k ∈ N

Then µt = µ⊞k := µ ⊞ · · ·⊞ µ, rescaled by a factor of 1− t

µ⊞k is like adding k indep.Hermitian matrices with e.v. distribution µ

Then extend definition to arbitrary t (i.e., fractional k)

“Fractional free convolution” of Shlyakhtenko and Tao
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Connection to random matrix theory

Theorem (Hoskins–Kabluchko, ’21; Arizmendi–Garza-Vargas–Perales,
’23)

If polynomials PN have limiting root distribution µ then ⌊Nt⌋-th derivative
of PN has limiting root distribution equal to

µ⊞k , k =
1

1− t
,

rescaled by a factor of 1− t, for 0 ≤ t < 1.

Results motivated by work of Steinerberger, 2019
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Example: Roots at ±1

Take p(z) = (z − 1)N/2(z + 1)N/2; i.e. µ = 1
2 (δ1 + δ−1)

Take t = 1/2—i.e., take N/2 derivatives—so k = 2

Then µ⊞k = µ ⊞ µ can be computed explicitly

After rescaling, get “arcsin” distribution dµt(x) =
1
π

1√
1−x2

dx

-0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
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PDE for the Cauchy transform

Use rescaled measure (1− t)µt of mass 1− t

Let C (z , t) be Cauchy transform of (1− t)µt

Use PDE from Shlyakhtenko–Tao for Cauchy transform of µ⊞k

Theorem

The Cauchy transform C (z , t) of (1− t)µt satisfies the PDE

∂C

∂t
=

1

C

∂C

∂z
.

Compare to ∂C
∂t = −C ∂C

∂z for backward heat flow
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PART 3

POLYNOMIALS WITH COMPLEX ROOTS:
HEAT FLOW
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Example: Characteristic polynomial of GUE

Let pN be char. poly. of GUE, zeros semicircular on [−2, 2]

Applying backward heat operator gives semicircular dist. on bigger
interval (width 4

√
1+ t)

What about forward heat operator

exp

{
+

t

2N

d2

dz2

}
pN(z) ?

Just change t to −t (semicircular on smaller interval)?
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Example: Characteristic polynomial of GUE

Let’s see!
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Example: Characteristic polynomial of GUE

Conjecturally, zeros → uniform on ellipse w/ semi-axes 2− t and t

At t = 1, zeros should become uniform on unit disk

Heat flow changes “semicircular law” (s.c. on [−2, 2]) to “circular
law” (uniform on disk)!
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Cauchy transform for measures in plane

Compactly supported prob. measure µ with bounded density

Define Cauchy transform as before:

C (z) =
∫

C

1

z − w
dµ(w), z ∈ C

But C will be non-holomorphic inside its support

Ex: µ uniform on unit disk: C (z) = z̄ in disk; 1/z outside

Recover density of measure µ as

1

π

∂

∂z̄
C (z)
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General conjecture

Conjecture (Hall–Ho, 2022+)

Let µτ be limiting empirical measure of zeros of

exp

{
− τ

2N

d2

dz2

}
pN(z).

Then Cauchy transform C (z , τ) satisfies PDE

∂C

∂τ
= −C

∂C

∂z
. (1)

Here τ is complex variable; derivatives are Cauchy–Riemann ops.

∂

∂τ
=

1

2

(
∂

∂τ1
− i

∂

∂τ2

)
;

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
“Same” PDE as in the real-rooted case!
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Heuristic argument for conjecture

Define Cauchy transform of zeros of polynomial

CN(z , τ) :=
1

N

N

∑
j=1

1

z − zj (τ)

where zj (τ) are zeros of heat-evolved polynomials

Theorem

The function CN satisfies the PDE

∂CN

∂τ
= −CN ∂CN

∂z
− 1

2N

∂2CN

∂z2
,

which formally converges to the PDE in the conjecture as N → ∞.

But not so easy to make a rigorous argument from this!
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Example 1: Elliptic random matrix model

Take X and Y be independent GUEs, τ ∈ C with |τ| < 1

Take

Z = e i arg(τ)/2
(√

1+ |τ| X + i
√

1− |τ| Y
)

Eigenvalues uniform on ellipse with semi-axes
√

1± |τ|, rotated by
arg(τ)/2
τ = 0 gives circular law

Theorem: Log potential S(z , τ) of limiting e.v. distribution satisfies
PDE in conjecture
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Example 1: Elliptic random matrix model

Start with char. poly. of model with τ = 0 (circular law)

Then evolve by heat flow for time t ∈ (0, 1)

Conjecture says: roots at time t should be uniform on ellipse with
semi-axes 1+ t and 1− t

And there are lots more similar examples from random matrix theory!
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Example 1: Elliptic random matrix model
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Example 2: Haar unitary plus elliptic
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Rigorous results for random polynomials

Kabluchko–Zaporozhets: large class of random polynomials with
independent coefficients

pN(z) =
N

∑
j=0

ξjc
N
j z j

ξj : indep. and identically distributed random var.

cNj are deterministic constants (with nice behavior as N → ∞)

Limiting distribution of zeros is rotationally invariant on a disk

Essentially any rot. invariant measure on disk occurs for some cNj
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Example: Weyl polynomials

Take

WN(z) =
N

∑
j=0

ξj
N j/2
√
j !

z j

Limiting distribution of zeros uniform on unit disk

Circular law for random polynomials!
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Rigorous results for random polynomials

Theorem (Hall–Ho–Jalowy–Kabluchko, 2023+)

The heat-evolved Kabluchko–Zaporozhets polynomials satisfy the Hall–Ho
conjecture with probability one.
That is, the Cauchy transform of the limiting root distribution satisfies the
claimed PDE, for sufficiently small τ.
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Evolution of zeros of Weyl polynomials, 0 ≤ τ ≤ 1
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Transport behavior

Expect zeros to evolve in straight lines with constant velocity

Velocity given by the value of Cauchy transform at time 0

These are characteristic curves of the relevant PDE

Theorem (Hall–Ho–Jalowy–Kabluchko, 2023+)

This behavior holds “at the bulk level.” That is, for sufficiently small τ,
the measure µτ is the push-forward of µ0 by map obtained by evolving
along straight lines.
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Straight-line motion
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PART 4

POLYNOMIALS WITH COMPLEX ROOTS:
REPEATED DIFFERENTIATION
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PDE for Cauchy transform

Expect Cauchy transform to satisfy

∂C

∂t
=

1

C

∂C

∂z
+

1

C

∂C̄

∂z
.

away from points where C = 0

Second term is present only because t is real

“Essentially” same PDE as for real-rooted case

Rigorous results for random polynomials
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Transport behavior for random polynomials

For random polynomials, we establish transport behavior based on
the following idea.

Idea

Let µ0 be the (radial) limiting root distribution of the initial polynomials
and let m0(z) be its Cauchy transform. Then under repeated
differentiation, roots evolve approximately radially with constant speed
according to

z(t) ≈ z0 −
t

m0(z0)

until they reach the origin, at which point they die.
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Transport behavior for random polynomials

We verify this idea rigorously at bulk level

Theorem (Hall–Ho–Jalowy–Kabluchko, 2023+)

The limiting root distribution µt of ⌊Nt⌋-th derivative is the push-forward
of µ0 under a transport map constructed according to the idea in the
previous slide.

Brian C. Hall Polynomials under flows September 2024 BIRS 41 / 48



Transport behavior for random polynomials
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Comparing to predicted straight-line motion
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Examples from random matrix theory

Look at limiting root distribution of PN(z2)

I.e. take square roots (with both signs) of roots of PN(z)

Take bi-unitarily invariant (“radial”) random matrix ZN

Match e.v.’s of ZN to roots of PN as N → ∞

Theorem (Campbell–O’Rourke–Renfrew)

As N → ∞, roots of ⌊Nt⌋-th derivative of PN , evaluated at z2, match
e.v.s of truncation of ZN to size ⌊N(1− t)⌋

Equivalent to fractional free convolution
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Examples from random matrix theory

E.g. PN are“exponential polynomials”; ZN is Ginibre

Initial roots/e.v.’s are uniform on unit disk

At time t, both give uniform measure on disk of radius
√
1− t
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Plot of roots of PN(z2)
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Plot of truncated Ginibre matrix
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Conclusion

THANK YOU FOR YOUR ATTENTION
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